# Neue FeAsS-Käfigstrukturen aus $[Cp^+Fe(CO)_2]_2$ $(Cp^+=C_5Me_4Et)$ und Realgar

#### Henri Brunner, Ludwig Poll und Joachim Wachter

Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg (Deutschland)

# Bernhard Nuber

Anorganisch-chemisches Institut, Universität Heidelberg, 69120 Heidelberg (Deutschland) (Eingegangen den 21. September 1993)

#### Abstract

The reaction of  $[Cp^+Fe(CO)_2]_2$  ( $Cp^+ = \eta^5 \cdot C_5Me_4Et$ ) with equimolar amounts of  $As_4S_4$  in boiling toluene gives  $Cp^+_2Fe_2As_2S_2$ (1) and  $Cp_2^+Fe_2As_2S_3$  (2). Both complexes form with two equivalents of  $Cr(CO)_5THF$  the bisadducts  $Cp^+_2Fe_2As_2S_2 \cdot 2Cr(CO)_5$ (3) and  $Cp^+_2Fe_2As_2S_3 \cdot 2Cr(CO)_5$  (4), respectively. The  $Cr(CO)_5$  fragments are bound to the As atoms. X-ray diffraction analyses have been carried out for 1 and 4. The structure of 1 contains two coplanar  $\eta^2$ -AsS bridges which bisect the Fe-Fe vector and are parallel to the  $Cp^+$  ligands. Complex 1 is formulated as a 30e tripledecker complex for it contains an As-As distance (2.629(1) Å) very close to As-As bonding. The structure of 4 contains a Fe\_2As\_2S\_3 cage. The inorganic ligand is formally built up by two *syn* oriented AsS units which are bridged by a S atom. Such a view is supported by the conversion of 1 into 2 by reaction with a mild sulfur donator, *e.g.* As\_4S\_4.

#### Zusammenfassung

Die Reaktion von  $[Cp^+Fe(CO)_2]_2$   $(Cp^+ = \eta^5 - C_5Me_4Et)$  mit äquimolaren Mengen As<sub>4</sub>S<sub>4</sub> in siedendem Toluol gibt die Komplexe  $Cp^+_2Fe_2As_2S_2$  (1) und  $Cp^+_2Fe_2As_2S_3$  (2). Diese lassen sich mit zwei Äquivalenten  $Cr(CO)_5$ THF zu den Diaddukten  $Cp^+_2$   $Fe_2As_2S_2 \cdot 2Cr(CO)_5$  (3) bzw.  $Cp^+_2Fe_2As_2S_3 \cdot 2Cr(CO)_5$  (4) umsetzen. Die  $Cr(CO)_5$ -Fragmente sind an den As-Atomen gebunden. Von 1 und 4 wurden Röntgenstrukturanalysen durchgeführt. Die Struktur von 1 enthält zwei coplanare  $\eta^2$ -AsS-Brücken, die den Fe-Fe-Vektor halbieren, und hierzu parallele  $Cp^+$ -Liganden. 1 wird als 30e-Tripeldeckerkomplex formuliert, da der As-As-Abstand (2.629(1) Å) einer As-As-Bindung sehr nahe kommt. Die Struktur von 4 enthält einen Fe<sub>2</sub>As<sub>2</sub>S<sub>3</sub>-Käfig. Der anorganische Ligand ist formal aus zwei *syn* ständigen AsS-Einheiten aufgebaut, die durch ein S-Atom verbrückt sind. Diese Betrachtungsweise wird gestützt durch Überführung von 1 in 2 mit einem milden Schwefelspender, z. B. As<sub>4</sub>S<sub>4</sub>.

Key words: Chromium; Iron; Carbonyl; Arsenic, Sulfur; Cage compound

#### 1. Einleitung

In Tripeldeckerkomplexen vom Typ  $[CpM]_2As_n$  (n = 4: M = Co [1]; n = 5: M = Cr [2], Mo [3], Fe [4]; n = 6: M = Mo [5]) bilden die Arsenliganden anorganische Ringsysteme, die gewisse Analogien zu cyclischen Kohlenwasserstoffen zeigen. Ähnliche Strukturen, jedoch andere Bindungsverhältnisse findet man in den von vier Schwefelatomen verbrückten Sulfidokomplexen  $Cp_2M_2S_4$  (M = Cr, Mo, Fe) [6]. Es ist daher von Interesse, die Auswirkungen des Schwefeleinbaus in cyclo-Arsenliganden auf Zusammensetzung und Eigenschaften der gebildeten Komplexe zu untersuchen.

Komplexe mit gemischten As-S-Liganden sind durch den Abbau von  $As_4S_4$  mittels reaktiver Übergangsmetallkomplexe zugänglich [7]. Sie enthalten, mit Ausnahme von cyclo-As<sub>2</sub>S [8], Käfigstrukturen. Noch nicht geklärt sind die genauen Bindungsverhältnisse in Cp\*<sub>2</sub>Mo<sub>2</sub>As<sub>2</sub>S<sub>3</sub> (Cp\* = C<sub>5</sub>Me<sub>5</sub>) [9], in dem höchstwahrscheinlich ein planarer As<sub>2</sub>S<sub>3</sub>-Ligand vorliegt. Wir berichten nunmehr über die neuartigen Käfigstrukturen von Cp+<sub>2</sub>Fe<sub>2</sub>As<sub>2</sub>S<sub>2</sub> und Cp+<sub>2</sub>-Fe<sub>2</sub>As<sub>2</sub>S<sub>3</sub>, sowie deren Reaktivitätsverhalten.

Correspondence to: Dr. J. Wachter.

## 2. Darstellung und spektroskopische Charakterisierung der Komplexe 1-4

Bereits bei der Reaktion von  $[Cp * Fe(CO)_2]_2$  (Cp\*  $= C_5 Me_5$ ) mit äquimolaren Mengen As<sub>4</sub>S<sub>4</sub> in siedendem Toluol wurden Komplexe der Zusammensetzung  $Cp_{2}^{*}Fe_{2}As_{2}S_{2}$  und  $Cp_{2}^{*}Fe_{2}As_{2}S_{3}$  erhalten, ohne daß jedoch die Molekülstrukturen gelöst werden konnten [10]. Substitution von Cp<sup>\*</sup> durch Cp<sup>+</sup> erlaubt nun die Darstellung der analogen Cp<sup>+</sup>-Komplexe 1 und 2 in deutlich besseren Ausbeuten (Schema 1), auch das Kristallisationsverhalten dieser Produkte ist nunmehr entscheidend verbessert. Die Reaktivität von Lösungen von 1 gegenüber Luftsauerstoff und Schwefel ist deutlich ausgeprägter als im Fall von 2. Aus der Vielzahl der gebildeten Produkte läßt sich nur  $Cp_{2}^{+}Fe_{2}S_{4}$  [11] identifizieren. Als Schwefeltransferreagens wirkt dagegen  $As_4S_4$ , das 1 in schwacher Ausbeute (10%; Toluol, 110°C, 15 h) in 2 überführt. Erhitzen der Lösungen von 1 alleine bewirkt keine Gerüstumstrukturierungen. Mit zwei Äquivalenten Cr(CO)<sub>5</sub>THF lassen sich 1 und 2 zu den Diaddukten 3 und 4 umsetzen (Schema 1). Von mehreren denkbaren Isomeren wird laut <sup>1</sup>H-NMR-Spektrum nur jeweils eines gebildet. Die Cr(CO)<sub>5</sub>-Addition ist in der Wärme reversibel.

Die IR-Spektren (Tabelle 1) von 1 und 2 enthalten keine Hinweise über den anorganischen Ligandenteil. Dagegen treten in den Spektren von 3 und 4 je fünf verschiedene  $\nu$ (CO)-Frequenzen auf, die in der Bandenlage, nicht jedoch in der Intensität übereinstimmen. Die Gründe für die Präsenz von mehr als der drei erwarteten CO-Absorptionen der Cr(CO)<sub>5</sub>-Fragmente sind wohl in der erheblichen Abweichung der CO-Liganden von der oktaedrischen Anordnung um die Cr-Zentren zu suchen, die zumindest aus der Kristallstrukturbestimmung von 4 hervorgeht (s.u.). Das <sup>1</sup>H-NMR-Spektrum von 1 (Tabelle 1) enthält zwei gleich intensive Resonanzen für die Ringmethylgruppen, die



Schema 1.

auch bei tiefer Temperatur  $(-80^{\circ}\text{C})$  nicht aufspalten. Im Cr(CO)<sub>5</sub>-Addukt 3 beobachtet man dagegen bei  $-10^{\circ}\text{C}$  vier Signale, die beim Erwärmen auf 25°C unter Verbreiterung in drei Signale übergehen. Über die möglichen Koordinationsisomeren (S,S-, As,S-, As,As-Koordination) kann keine Aussage gemacht werden. Geringes Abkühlen genügt jedoch, um die Cyclopentadienylringe von 3 in ihrer freien Rotation zu blockieren, wobei die Symmetrie gegenüber 1 (idealisiert  $C_s$ ) niedriger ist. Werden Lösungen von 3 über 50°C erwärmt, so dissoziieren die Cr(CO)<sub>5</sub>-Grppen ab, und es tritt das für 1 typische Signalmuster auf. In den <sup>1</sup>H-NMR-Spektren von 2 und 4 werden für die am Ring gebundenen Methylgruppen vier bzw. drei Singuletts beobachtet.

Die an Einkristallen von 1 durchgeführte Röntgenstrukturanalyse (Tabellen 2, 3) ergab zwei voneinander unabhängige Moleküle in der Elementarzelle, die sich lediglich in der Konformation der Cp<sup>+</sup>-Liganden unterscheiden. Wesentliches Strukturmerkmal (Abb. 1) sind zwei coplanare  $\eta^2$ -AsS-Brücken, die den Fe-Fe-Vektor halbieren, und hierzu parallele Cp<sup>+</sup>-Liganden. Die anorganischen Liganden bilden ein Trapezoid mit Winkeln von jeweils 95.1(1)° an den beiden As-Atomen. Eine ähnliche Anordnung der Liganden findet man in Cp<sup>+</sup><sub>2</sub>Co<sub>2</sub>(As<sub>2</sub>)<sub>2</sub> [1]. Dieser Komplex ist als 32e-Tripeldecker-Sandwich formuliert worden, mit

|   | $IR (cm^{-1})$                        |                      | <sup>1</sup> H-NMR      |                               |                                                   | Solvens <sup>a</sup> (T (K)) |
|---|---------------------------------------|----------------------|-------------------------|-------------------------------|---------------------------------------------------|------------------------------|
|   | v(CO) (Toluol)                        | $\nu$ (Cr–CO)(KBr)   | $\delta(CH_2CH_3)^{b)}$ | δ(CH <sub>3</sub> )           | δ(CH <sub>2</sub> CH <sub>3</sub> ) <sup>b)</sup> |                              |
| 1 |                                       |                      | 0.78 (t, 6H)            | 1.44 (s, 12H), 1.48 (s, 12H)  | 2.00 (q, 4H)                                      | CDCl <sub>3</sub> (298)      |
|   |                                       |                      | 0.70 (t, 6H)            | 1.42 (s, 12H), 1.43 (s, 12H)  | 2.05 (q, 4H)                                      | Toluol-d <sub>8</sub> (298)  |
| 2 |                                       |                      | 1.05 (t, 6H)            | 1.49 (s, 6H), 1.54 (s, 6H),   | 1.82 (q, 4H)                                      | CDCl <sub>3</sub> (298)      |
|   |                                       |                      |                         | 1.56 (s, 6H), 1.57 (s, 6H)    |                                                   | -                            |
| 3 | 2055m, 2040m, 1960sh,                 | 668m, 655m, 640m     | 1.25 (t, 6H)            | 1.55 (s, 12H), 1.62 (br, 6H), | 1.95 (g, 4H)                                      | CDCl <sub>3</sub> (298)      |
| • | 1945vs, 1935vs                        | , ,                  |                         | 1.68 (br, 6H)                 |                                                   | U U                          |
|   | · · · · · · · · · · · · · · · · · · · |                      | 1.02 (t, 6H)            | 1.13 (s, 6H), 1.16 (s, 6H),   | 1.84 (g, 4H)                                      | Toluol- $d_8$ (263)          |
|   | - *                                   |                      |                         | 1.33 (s, 6H), 1.39 (s, 6H)    | •                                                 | 0                            |
| 4 | 2060s, 2050s, 1992m.                  | 662s, 648sb, 645s    | 1.13 (t. 6H)            | 1.46 (s, 6H), 1.52 (s, 6H),   | 1.79 (g, 4H)                                      | CDCl <sub>3</sub> (298)      |
| - | 1942vs.br. 1930sh                     | , <b></b> , <b>-</b> |                         | 1.55 (s, 12H)                 |                                                   | <u> </u>                     |

TABELLE 1, IR- und <sup>1</sup>H-NMR-spektroskopische Daten der Komplexe 1-4

<sup>a</sup> Gerät Bruker WM 250, i-TMS. <sup>b</sup>  $^{3}J$  (H–H) = 7.5 Hz

TABELLE 2. Atomkoordinaten (×10<sup>4</sup>) und thermische Parameter  $(U_{eq} \times 10^3)$  von Cp<sup>+</sup><sub>2</sub>Fe<sub>2</sub>As<sub>2</sub>S<sub>2</sub> (1)

|       | <i>x</i>           | у         | Z         | U <sub>eq</sub> |
|-------|--------------------|-----------|-----------|-----------------|
| Fe(1) | 2166(1)            | - 733(1)  | 7957(1)   | 32(1)           |
| Fe(2) | 2137(1)            | 1440(1)   | 9225(1)   | 32(1)           |
| Fe(3) | 3923(1)            | - 2999(1) | 13175(1)  | 31(1)           |
| Fe(4) | 6241(1)            | -2870(1)  | 14356(1)  | 32(1)           |
| As(1) | 1764(1)            | 767(1)    | 7596(1)   | 49(1)           |
| As(2) | 3699(1)            | 1008(1)   | 8697(1)   | 55(1)           |
| As(3) | 5295(1)            | - 1494(1) | 14488(1)  | 50(1)           |
| As(4) | 5852(1)            | -2342(1)  | 13052(1)  | 59(1)           |
| S(1)  | 694(1)             | -97(1)    | 8220(1)   | 45(1)           |
| S(2)  | 2911(1)            | 175(1)    | 9480(1)   | 52(1)           |
| S(3)  | 5116(1)            | - 4000(1) | 12941(1)  | 57(1)           |
| S(4)  | 4479(1)            | -3015(1)  | 14606(1)  | 46(1)           |
| C(1)  | 2223(5)            | - 2239(4) | 7924(4)   | 49(3)           |
| C(2)  | 1205(5)            | -2365(4)  | 7306(4)   | 48(3)           |
| C(3)  | 1514(4)            | - 1901(4) | 6676(3)   | 40(2)           |
| C(4)  | 2711(4)            | - 1489(4) | 6908(3)   | 39(2)           |
| C(5)  | 3153(5)            | - 1699(4) | 7680(3)   | 43(2)           |
| C(6)  | 2300(8)            | - 2665(5) | 8686(5)   | 89(5)           |
| C(7)  | - 8(6)             | - 2916(5) | 7273(5)   | 92(4)           |
| C(8)  | 702(5)             | - 1906(5) | 5870(4)   | 76(3)           |
| C(9)  | 3387(6)            | - 995(5)  | 6383(4)   | 69(3)           |
| C(10) | 4399(5)            | - 1458(5) | 8119(5)   | 82(4)           |
| C(11) | 2281(8)            | - 3830(5) | 8362(5)   | 104(5)          |
| C(12) | 1378(4)            | 2613(4)   | 9357(3)   | 37(2)           |
| C(13) | 1168(5)            | 2100(4)   | 9988(3)   | 39(2)           |
| C(14) | 2227(5)            | 2243(4)   | 10551(3)  | 40(2)           |
| C(15) | 3104(5)            | 2857(4)   | 10293(3)  | 41(2)           |
| C(16) | 2582(4)            | 3086(4)   | 9556(3)   | 37(2)           |
| C(17) | 487(5)             | 2725(5)   | 8672(4)   | 50(3)           |
| C(18) | 13(5)              | 1516(5)   | 10047(4)  | 60(3)           |
| C(19) | 2402(6)            | 1865(5)   | 11336(4)  | 63(3)           |
| C(20) | 4382(5)            | 3252(5)   | 10/60(4)  | 62( <i>3</i> )  |
| C(21) | 3192(5)            | 3//2(4)   | 9105(4)   | 52(5)           |
| C(22) | 129(6)             | 3088(5)   | 9082(5)   | 80(4)           |
| C(23) | 3113(4)            | -2290(4)  | 12420(3)  | 37(2)           |
| C(24) | 2577(4)            | -2392(4)  | 13099(3)  | 33(2)<br>39(7)  |
| C(25) | 2149(4)            | - 3301(4) | 12971(3)  | 30(2)           |
| C(20) | 2419(4)            | -4100(4)  | 112223(3) | 30(2)           |
| C(27) | 3015(4)            | -3353(4)  | 11000(3)  | 41(2)<br>52(3)  |
| C(28) | 3011(3)            | - 1233(4) | 12207(4)  | 52(3)           |
| C(29) | 2370(3)            | - 1310(4) | 13763(4)  | 59(3)           |
| C(30) | 1403(3)            | -5302(3)  | 11831(4)  | 62(3)           |
| C(31) | 2007(3)            | - 3509(4) | 11031(4)  | 64(3)           |
| C(32) | 3417(3)<br>2767(5) | -1052(6)  | 11676(5)  | 83(4)           |
| C(34) | 7268(4)            | = 3701(4) | 14587(3)  | 40(2)           |
| C(34) | 7200(4)            | - 3771(4) | 1-302(3)  | -10(4)          |

einem rechteckig verzerrten As<sub>4</sub>-Mitteldeck  $(d_{As} \dots As_{As} 2.844(1) \text{ Å})$ . Trapezoid angeordnet sind die beiden As<sub>2</sub>-Brücken in  $[(MeC_5H_4)Mo(CO)_2]_2(As_2)_2$ , wobei der kürzere der beiden nichtbindenden Abstände 3.051 Å beträgt [12]. Im Vergleich zu diesen beiden Beispielen ist der As-As-Abstand in 1 (2.629(1) Å) auffallend kurz. Von nichtbindender Größenordnung sind die Fe-Fe- und S-S-Abstände.

Als oberer Grenzwert für bindende As-As-Wechselwirkungen in Brückenliganden werden bisher 2.587(3) Å angenommen [1,13], während der höchste Wert (2.509 Å) für kovalente Verbindungen in dem von  $As_4S_4$  abgeleiteten  $As_2P_2S_7$  gefunden wurde [14]. Daher scheint es gerechtfertigt, 1 eher als 30e-Tripeldeckerkomplex zu formulieren denn als durch zwei

TABELLE 3. Atomkoordinaten (×10<sup>4</sup>) und thermische Parameter  $(U_{eq} \times 10^3)$  von Cp<sup>+</sup><sub>2</sub>Fe<sub>2</sub>As<sub>2</sub>S<sub>3</sub>·2Cr(CO)<sub>5</sub> (4)

|             | ×         | N          | 7        |                 |
|-------------|-----------|------------|----------|-----------------|
|             |           | У          | 2        | U <sub>eq</sub> |
| Fe(1)       | 8319(3)   | 4273(2)    | 8319(1)  | 42(1)           |
| Fe(2)       | 6246(3)   | 3682(2)    | 8712(1)  | 50(1)           |
| Cr(1)       | 7781(3)   | 3331(3)    | 6556(2)  | 47(2)           |
| Cr(2)       | 7169(3)   | 368(3)     | 9030(2)  | 51(2)           |
| As(1)       | 7934(2)   | 3317(2)    | 7550(1)  | 40(1)           |
| As(2)       | 6822(2)   | 2017(2)    | 8591(1)  | 45(1)           |
| <b>S(1)</b> | 7958(5)   | 3160(4)    | 8925(2)  | 46(2)           |
| S(2)        | 7430(5)   | 1802(4)    | 7773(2)  | 51(2)           |
| S(3)        | 6646(5)   | 4281(4)    | 7929(3)  | 52(2)           |
| O(12)       | 7312(19)  | 5537(13)   | 6473(10) | 157(13)         |
| O(13)       | 5371(15)  | 2928(15)   | 6748(9)  | 111(10)         |
| O(14)       | 8230(13)  | 1167(10)   | 6468(7)  | 68(7)           |
| O(15)       | 7542(17)  | 3288(15)   | 5375(6)  | 110(10)         |
| O(16)       | 10232(16) | 3655(15)   | 6372(10) | 122(11)         |
| O(32)       | 7542(17)  | 1312(16)   | 10098(7) | 121(11)         |
| O(33)       | 7690(17)  | - 1597(13) | 9512(8)  | 112(10)         |
| O(34)       | 6963(20)  | - 766(13)  | 7999(7)  | 106(9)          |
| O(35)       | 9545(15)  | 878(14)    | 8839(7)  | 86(9)           |
| O(36)       | 4798(16)  | - 134(18)  | 9258(10) | 120(12)         |
| C(1)        | 9081(20)  | 5310(17)   | 8822(9)  | 54(8)           |
| C(2)        | 9847(21)  | 4619(18)   | 8654(10) | 59(7)           |
| C(3)        | 9946(21)  | 4630(18)   | 8099(10) | 60(8)           |
| C(4)        | 9276(19)  | 5354(17)   | 7920(9)  | 53(7)           |
| C(5)        | 8704(19)  | 5804(17)   | 8349(10) | 61(8)           |
| C(6)        | 8844(20)  | 5588(18)   | 9401(9)  | 85(9)           |
| C(7)        | 10515(20) | 3941(17)   | 9026(10) | 93(10)          |
| C(8)        | 10821(20) | 4056(17)   | 7767(10) | 104(11)         |
| C(9)        | 9190(19)  | 5750(16)   | 7372(8)  | 84(9)           |
| C(10)       | 7972(20)  | 6686(16)   | 8302(9)  | 94(9)           |
| C(11)       | 9808(19)  | 6311(18)   | 9562(11) | 116(12)         |
| C(12)       | 7545(20)  | 4707(17)   | 6538(11) | 75(12)          |
| C(13)       | 6297(24)  | 3092(20)   | 6688(12) | 83(13)          |
| C(14)       | 8029(19)  | 1999(19)   | 6550(10) | 66(11)          |
| C(15)       | 7589(20)  | 3291(19)   | 5830(9)  | 61(10)          |
| C(16)       | 9273(24)  | 3536(19)   | 6462(11) | 81(13)          |
| C(21)       | 5441(22)  | 4843(19)   | 9121(10) | 65(8)           |
| C(22)       | 4755(19)  | 4518(17)   | 8725(9)  | 49(7)           |
| C(23)       | 4527(23)  | 3476(21)   | 8840(11) | 86(10)          |
| C(24)       | 5097(24)  | 3292(22)   | 9269(11) | 86(10)          |
| C(25)       | 5647(23)  | 4109(21)   | 9489(11) | 79(9)           |
| C(26)       | 5737(27)  | 5958(22)   | 9191(13) | 152(16)         |
| C(27)       | 4343(22)  | 5135(20)   | 8257(10) | 138(14)         |
| C(28)       | 3790(21)  | 2854(19)   | 8405(10) | 152(14)         |
| C(29)       | 4917(26)  | 2354(21)   | 9641(10) | 178(17)         |
| C(30)       | 6271(22)  | 4186(19)   | 9983(10) | 132(13)         |
| C(31)       | 4865(28)  | 6411(27)   | 9526(15) | 272(25)         |
| C(32)       | 7372(22)  | 967(18)    | 9686(10) | 67(12)          |
| C(33)       | 7513(23)  | - 820(17)  | 9326(12) | 92(14)          |
| C(34)       | 7053(25)  | - 317(19)  | 8415(11) | 78(12)          |
| C(35)       | 8602(22)  | 645(19)    | 8872(14) | 92(15)          |
| C(36)       | 5667(25)  | 72(21)     | 9174(13) | 81(15)          |



Abb. 1. Molekülstruktur (ORTEP Zeichnung) von Cp<sup>+</sup><sub>2</sub>Fe<sub>2</sub>As<sub>2</sub>S<sub>2</sub> (1). Es ist nur eines der beiden unabhängigen Moleküle gezeigt.

getrennte AsS<sup>3-</sup>-Liganden rein  $\sigma$ -verbrücktes 36e-Dimer. Für einen Butadien-analogen S=As-As=S-Liganden sprechen auch die vergleichsweise recht kurzen As-S-Abstände (im Durchschnitt 2.165 Å) [15]. Etwas länger (2.237(3) Å) sind die As-S-Abstände in (C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>Mo<sub>2</sub>As<sub>4</sub>S [16] und Cp<sup>\*</sup><sub>2</sub>Mo<sub>2</sub>AsS<sub>3</sub>Co(CO)<sub>2</sub> [17], die beide einen  $\mu_2, \eta^2$ -AsS-Liganden enthalten.

Eine Röntgenstrukturanalyse von 4 ergab, daß zwei durch ein S-Atom überbrückte syn-ständige  $\eta^2$ -AsS-Einheiten einen As<sub>2</sub>S<sub>3</sub>-Liganden bilden, der als 8e-



TABELLE 4. Ausgewählte Bindungslängen (Å) und -winkel (°) von  $Cp^+_2Fe_2As_2S_2$  (1)

| As(1)-As(2)          | 2.629(1) | As(2)-As(1)-Fe(1)    | 57.5(1) |
|----------------------|----------|----------------------|---------|
| As(1)-Fe(1)          | 2.452(1) | As(2)-As(1)-Fe(2)    | 57.3(1) |
| As(1)-Fe(2)          | 2.448(1) | Fe(1)-As(1)-Fe(2)    | 78.7(1) |
| As(1)-S(1)           | 2.164(2) | As(2)-As(1)-S(1)     | 95.0(1) |
| As(2)-Fe(1)          | 2.447(1) | Fc(1)-As(1)-S(1)     | 59.7(1) |
| As(2)-Fe(2)          | 2.437(1) | Fe(2) - As(1) - S(1) | 59.8(1) |
| As(2)-S(2)           | 2.166(2) | As(1)-As(2)-Fe(1)    | 57.6(1) |
| Fe(1)-S(1)           | 2.310(2) | As(1)-As(2)-Fe(2)    | 57.6(1) |
| Fe(1)-S(2)           | 2.302(2) | Fe(1)-As(2)-Fe(2)    | 79.0(1) |
| Fe(2)-S(1)           | 2.311(2) | As(1) - As(2) - S(2) | 95.1(1) |
| Fe(2)-S(2)           | 2.306(2) | Fe(1) - As(2) - S(2) | 59.5(1) |
| As(3)-As(4)          | 2.602(1) | Fe(2)-As(2)-S(2)     | 59.8(1) |
| As(3)-Fe(3)          | 2.455(1) | As(1)-Fe(1)-As(2)    | 64.9(1) |
| As(3)-Fe(4)          | 2.468(1) | As(1) - Fe(1) - S(1) | 54.0(1) |
| As(3)-S(4)           | 2.164(2) | As(2)-Fe(1)-S(1)     | 96.5(1) |
| As(4)-Fe(3)          | 2.443(1) | As(1)-Fe(1)-S(2)     | 96.7(1) |
| As(4)-Fe(4)          | 2.448(2) | As(2)-Fe(1)-S(2)     | 54.2(1) |
| As(4)-S(3)           | 2.170(2) | S(1)-Fe(1)-S(2)      | 81.6(1) |
| Fe(3)-S(3)           | 2.302(2) | As(1)-Fe(2)-As(2)    | 65.1(1) |
| Fe(3)-S(4)           | 2.314(2) | As(1)-Fe(2)-S(1)     | 54.0(1) |
| Fe(4)-S(3)           | 2.298(2) | As(2)-Fe(2)-S(1)     | 96.7(1) |
| Fe(4)-S(4)           | 2.310(2) | As(1) - Fe(2) - S(2) | 96.7(1) |
| $Fe(1) \cdots Fe(2)$ | 3.107    | As(2)-Fe(2)-S(2)     | 54.3(1) |
| $Fe(3) \cdots Fe(4)$ | 3.123    | S(1) - Fe(2) - S(2)  | 81.5(1) |
| $S(1) \cdots S(2)$   | 3.012    | As(1)-S(1)-Fe(1)     | 66.4(1) |
| $S(3) \cdots S(4)$   | 3.011    | As(1)-S(1)-Fe(2)     | 66.2(1) |
|                      |          | Fe(1) - S(1) - Fe(2) | 84.5(1) |
|                      |          | As(2)-S(2)-Fe(1)     | 66.3(1) |
|                      |          | As(2)-S(2)-Fe(2)     | 66.0(1) |
|                      |          | Fe(1)-S(2)-Fe(2)     | 84.8(1) |
|                      |          |                      |         |



Abb. 2. Molekülstruktur von  $Cp_{2}^{+}Fe_{2}As_{2}S_{3} \cdot 2Cr(CO)_{5}$  (4).

TABELLE 5. Ausgewählte Bindungslängen (Å) und -winkel (°) von  $Cp^+_2Fe_2As_2S_3 \cdot 2Cr(CO)_5$  (4)

| Fe(1)-Fe(2) | 2.826(5) | As(1)-Fe(1)-Fe(2)    | 87.8(1)  |  |
|-------------|----------|----------------------|----------|--|
| Fe(1)-As(1) | 2.389(4) | As(1)-Fe(1)-S(3)     | 57.9(2)  |  |
| Fe(1)-S(1)  | 2.198(7) | S(1) - Fe(1) - S(3)  | 97.5(3)  |  |
| Fe(1)-S(2)  | 2.262(7) | Cr(1)-As(1)-Fe(1)    | 145.7(2) |  |
| Fe(2)-As(2) | 2.380(4) | S(2) - As(1) - S(3)  | 103.6(2) |  |
| Fe(2)-S(1)  | 2.264(7) | S(2) - As(1) - Cr(1) | 104.0(2) |  |
| Fe(2)-S(3)  | 2.201(8) | S(3) - As(1) - Cr(1) | 111.8(2) |  |
| Cr(1)-As(1) | 2.534(5) | Cr(2)-As(2)-Fe(2)    | 145.9(2) |  |
| Cr(2)-As(2) | 2.532(5) | S(1) - As(2) - S(2)  | 103.8(2) |  |
| As(1)-S(2)  | 2.215(6) | As(2)-S(1)-Fe(1)     | 109.4(3) |  |
| As(1)-S(3)  | 2.254(7) | Fe(1)-S(1)-Fe(2)     | 78.6(2)  |  |
| As(2)-S(1)  | 2.241(6) | As(1) - S(2) - As(2) | 102.1(2) |  |
| As(2)-S(2)  | 2.226(6) |                      |          |  |
|             |          |                      |          |  |

sehr ähnlichen Bindungsparametern vor. Einziger Unterschied ist eine Metall-Metall-Einfachbindung  $(d_{\text{Fe-Fe}} 2.826(5) \text{ Å})$ , die zum Erreichen der Edelgaskonfiguration beiträgt. Strukturanalogien zwischen Komplexen direkt benachbarter Ubergangsmetalle, die den gleichen Typ an Hauptgruppenliganden enthalten, sind nicht selbstverständlich, wie das Paar Cp<sup>\*</sup><sub>2</sub>Fe<sub>2</sub>  $(\mu,\eta^{1:1}-S_2)(\mu,\eta^{2:2}-S_2)$  [11,19] und Cp<sup>\*</sup><sub>2</sub>Co<sub>2</sub> $(\mu,\eta^{1:2}-S_2)_2$ [11] lehrt. Die Cr(CO)<sub>5</sub>-Gruppen sind an beiden As-Atomen unter erheblicher Verzerrung der Tetraeder (Fe-As-Cr 145.8°) koordiniert. Ursache für die starke Deformation dürften beträchtliche sterische Wechselwirkungen zwischen den Cr(CO)<sub>5</sub>-Gruppen und den Cp<sup>+</sup>-Liganden sein. Auch sind die Cr-As-Abstände um 0.15 Å länger als die Fe-As-Abstände. Das in 2 und 4 gefundene Bauprinzip scheint verallgemeinerungsfähig: Die Reaktion von  $[(C_5H_5)Fe(CO)_2]_2$ mit  $H_2C=C(CN)S^{t}Bu$  ergibt das Dimere 6, das in Aufbau und Valenzelektronenbilanz analog zum Fe<sub>2</sub>As<sub>2</sub>S<sub>3</sub>-Käfig ist [20].



Zusammenfassend läßt sich mit Hilfe der gelösten Strukturen von 1 und 4 ein interessanter Einblick in die Strukturchemie von Komplexen mit Liganden auf Arsensulfid-Basis gewinnen. Während sich 1 und 3 als Tripeldeckerkomplexe mit butadienanalogem Mitteldeck beschreiben lassen, stellen 2 und 4 typische Käfigmoleküle dar. Die besondere Rolle von AsS-Einheiten beim Aufbau neuer Käfigstrukturen, z.B. des  $M_2As_2S_3$ -Gerüsts, wird durch die Überführung von 1 in 2 mittels  $As_4S_4$  dokumentiert. Der umgekehrte Weg konnte bisher noch nicht realisiert werden.

#### 3. Experimenteller Teil

Alle Arbeiten wurden unter Ausschluß von Luft und Feuchtigkeit durchgeführt. Die FD-Massenspektren wurden an einem Finnigan MAT 95-Spektrometer aus Toluol-Lösungen aufgenommen. As<sub>4</sub>S<sub>4</sub> wurde nach Ref. 21 durch Zusammenschmelzen stöchiometrischer Mengen As und S unter N<sub>2</sub> bei 500–600°C gewonnen,  $[Cp^+Fe(CO)_2]_2$  wurde analog zu  $[Cp^*Fe(CO)_2]_2$  dargestellt [22].

# 3.1. Reaktion von $[Cp + Fe(CO)_2]_2$ mit $As_4S_4$

Das braunviolette Gemisch aus 1243 mg (2.38 mmol)  $[Cp^+Fe(CO)_2]_2$ , 1018 mg (2.38 mmol) As<sub>4</sub>S<sub>4</sub> und 60 ml Toluol wird 15 h am Rückfluß gekocht. Nach dem Entfernen des Lösungsmittels wird der ölige braune Rückstand in Toluol/Pentan 3:1 aufgenommen und an SiO<sub>2</sub> (Säule  $20 \times 3$  cm) chromatographiert. Mit Toluol/Pentan 3:1 eluiert man zuerst eine grünbraune und dann eine rotviolette Zone. Letztere enthält 2 in 31% Ausbeute. Die erste Zone wird nochmals an  $SiO_2$ (Säule  $20 \times 3$  cm) mit Toluol/Pentan 1:1 chromatographiert, wobei grünes 1 (49% Ausbeute) und geringe Mengen einer noch unbekannten braunen Verbindung isoliert werden. Die Komplexe werden aus Toluol/Pentan 2:1 (1) bzw. Toluol/Pentan 5:1 (2) bei - 20°C umkristallisiert. Elementaranalysen: 1: Gef.: C, 42.19; H, 5.53; S, 10.14. C<sub>22</sub>H<sub>34</sub>Fe<sub>2</sub>As<sub>2</sub>S<sub>2</sub> (624.2) ber.: C, 42.33; H, 5.49; S, 10.28%. Molmasse 624.4 (FD-MS). 2: Gef.: C, 40.29; H, 5.05; As, 22.85; S, 14.71.  $C_{22}H_{34}Fe_2As_2S_3$  (656.3) ber.: C, 40.26; H, 5.22; As, 22.83; S, 14.66%. Molmasse 656.2 (FD-MS).

3.2. Darstellung von  $(C_5Me_4Et)_2Fe_2As_2S_2 \cdot 2Cr(CO)_5$ (3)

Eine Lösung aus 412 mg (0.66 mmol) 1 und 1.32 mmol  $Cr(CO)_5$ THF in 150 ml THF wird 16 h bei Raumtemperatur gerührt. Nach dem Entfernen des Lösungsmittels wird der braungrüne Rückstand in Toluol/Pentan 1:1 aufgenommen und an SiO<sub>2</sub> (Säule 22 × 3 cm) chromatographiert. Mit Toluol/Pentan 1:1 eluiert man zunächst eine grüne Zone (Edukt) und darauf eine breite braune Zone, die 3 in 57% Ausbeute enthält. Umkristallisation aus Toluol bei – 20°C liefert dunkelbraune Kristalle. Elementaranalyse: 3: Gef.: C, 37.99; H, 3.42.  $C_{32}H_{34}Fe_2As_2Cr_2O_{10}S_2$  (1008.3) ber.: C, 38.12; H, 3.40%. Molmasse 1009.4 (FD-MS).

## 3.3. Darstellung von $(C_5Me_4Et)_2Fe_2As_2S_3 \cdot 2Cr(CO)_5$ (4)

Eine Lösung aus 361 mg (0.55 mmol) 2 und 1.10 mmol Cr(CO)<sub>5</sub>THF in 150 ml THF wird 16 h bei Raumtemperatur gerührt. Säulenchromatographie des

nach Entfernen des Lösungsmittels rotvioletten Rückstands (SiO<sub>2</sub>, Säule 22 × 3 cm) mit Toluol/Pentan 1:1 gibt eine breite rotviolette Zone, die 4 in 60% Ausbeute enthält. Umkristallisation aus Toluol/Pentan 1:1 bei – 20°C liefert dunkle Prismen. Elementaranalyse: 4: Gef.: C, 36.95; H, 3.25.  $C_{32}H_{34}Fe_2As_2Cr_2-O_{10}S_3$  (1040.4) ber.: C, 36.94; H, 3.29%. Molmasse 1040.7 (FD-MS).

3.4. Röntgenographische Daten von  $(C_5 Me_4 Et)_2 Fe_2$ -As<sub>2</sub>S<sub>2</sub> (1)

Raumgruppe  $C_i^1$ ,  $P\overline{1}$  (2), a = 12.650(5), b = 13.763(4), c = 16.298(6) Å,  $\alpha = 107.15(2)$ ,  $\beta = 100.79(3)$ ,  $\gamma = 104.91(3)^\circ$ , V = 2511.5 Å<sup>3</sup> (25 Reflexe (3.3 < 2θ < 27°); Z = 2. Syntex-R3-Diffraktometer (MoK α), 3.0 < 2θ < 55.0°; 11515 Reflexe, davon 8293 mit  $I > 2.5\sigma(I)$ zur Verfeinerung benutzt. Patterson- und Fouriermethoden, anisotrope Verfeinerung für alle Nichtwasserstoffatome mit R = 0.043,  $R_w = 0.039$ .

3.5. Röntgenographische Daten von  $(C_5Me_4Et)_2Fe_2$ -As<sub>2</sub>S<sub>3</sub>· 2Cr(CO)<sub>5</sub> (4)

Raumgruppe  $D_{2}^{4}$ ,  $P2_{1}2_{1}2_{1}$  (19), a = 12.16(1), b = 13.54(1), c = 25.41(2) Å, V = 4183.7 Å<sup>3</sup> (25 Reflexe (10.0 <  $2\theta$  <  $25^{\circ}$ )); Z = 4. AED II-Diffraktometer (MoK $\alpha$ ),  $3.0 < 2\theta < 50.0^{\circ}$ ; 4158 Reflexe, davon 1954 mit  $I > 2.5\sigma(I)$  zur Verfeinerung benutzt. Pattersonund Fouriermethoden, anisotrope Verfeinerung für alle Nichtwasserstoffatome mit Ausnahme der Cyclopentadienylkohlenwasserstoffe; R = 0.061,  $R_{w} = 0.046$ .

#### Dank

Wir danken Prof. Dr. G. Huttner für die Bereitstellung von Institutsmitteln zur Strukturbestimmung.

#### Literatur

1 O.J. Scherer, K. Pfeiffer, G. Heckmann und G. Wolmershäuser, J. Organomet. Chem., 425 (1992) 141.

- 2 O.J. Scherer, W. Wiedemann und G. Wolmershäuser, Chem. Ber., 123 (1990) 3.
- 3 A.L. Rheingold, M.J. Foley und P.J. Sullivan, J. Am. Chem. Soc., 104 (1982) 4727.
- 4 O.J. Scherer, C. Blath und G. Wolmershäuser, J. Organomer. Chem., 387 (1990) C21.
- 5 O.J. Scherer, H. Sitzmann und G. Wolmershäuser, Angew. Chem., 101 (1989) 214; Angew. Chem., Int. Ed. Engl., 28 (1989) 212.
- 6 J. Wachter, Angew. Chem., 101 (1989) 1645; Angew. Chem., Int. Ed. Engl., 28 (1989) 1613.
- 7 (a) H. Brunner, H. Kauermann, B. Nuber, J. Wachter und M.L. Ziegler, Angew. Chem., 98 (1986) 551; Angew. Chem., Int. Ed. Engl., 25 (1986) 557; (b) M. Di Vaira, P. Stoppioni und M. Peruzzini, Inorg. Chim. Acta, 132 (1987) 37; (c) G.A. Zank, T.B. Rauchfuss und S.R. Wilson, J. Am. Chem. Soc., 106 (1984) 7621.
- 8 M. Di Vaira und P. Stoppioni, Coord. Chem. Rev., 120 (1992) 259.
- 9 I. Bernal, H. Brunner, W. Meier, H. Pfisterer, J. Wachter und M.L. Ziegler, Angew. Chem., 96 (1984) 428; Angew. Chem., Int. Ed. Engl., 23 (1984) 438.
- 10 H. Kauermann, Dissertation, Universität Regensburg, 1985.
- 11 H. Brunner, N. Janietz, W. Meier, G. Sergeson, J. Wachter, T. Zahn und M.L. Ziegler, Angew. Chem., 97 (1985) 1056; Angew. Chem., Int. Ed. Engl., 24 (1985) 1060.
- 12 A.-J. DiMaio und A.L. Rheingold, J. Chem. Soc., Chem. Commun., (1987) 404.
- Zur Problematik von As-As-Abständen in Tripeldeckerkomplexen von cyclo-As<sub>5(6)</sub> siehe: O.J. Scherer, Angew. Chem., 102 (1990) 1137; Angew. Chem., Int. Ed. Engl., 29 (1990) 1104; (b) A.-J. DiMaio und A.L. Rheingold, Chem. Rev., 90 (1990) 169.
- 14 W. Houle, Z. Naturforsch. Teil B, 39 (1984) 1088.
- 15 Die As-S-Abstände in As<sub>2</sub>S<sub>3</sub> und As<sub>4</sub>S<sub>4</sub> betragen im Schnitt 2.24 Å (D.J.E. Mullen und W. Nowacki, Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem., 136 (1972) 48, zit. Lit.).
- 16 A.-J. DiMaio und A.L. Rheingold, Inorg. Chem., 29 (1990) 798.
- 17 H. Brunner, H. Kauermann, U. Klement, J. Wachter, T. Zahn und M.L. Ziegler, Angew. Chem., 97 (1985) 122; Angew. Chem., Int. Ed. Engl., 24 (1985), 132.
- 18 Eine Kristallstrukturbestimmung von 2 bestätigt einen zu 4 analogen Molekülkern, sie konnte jedoch mangels geeigneter Kristallqualität nicht vollendet werden (B. Nuber, persönliche Mitteilung).
- 19 H. Chanaud, A.M. Ducourant und G. Giannotti, J. Organomet. Chem., 190 (1980) 201; R. Weberg, R.C. Haltiwanger und M. Rakowski DuBois, Organometallics, 4 (1985) 1315.
- 20 J. Herbig, J. Köhler, B. Nuber, H.G. Stammhuber und M.L. Ziegler, J. Organomet. Chem., 444 (1993) 107.
- 21 R. Steudel und W.P. Schenk, in G. Brauer (Ed.), Handbuch der Präparativen Anorganischen Chemie, Bd. 1, S. 582, Enke-Verlag, Stuttgart, 1981.
- 22 R.B. King und M.B. Bisnette, J. Organomet. Chem., 8 (1967) 287.